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One of the main problems in high-throughput research for materials is still the design of experiments. At
early stages of discovery programs, purely exploratory methodologies coupled with fast screening tools
should be employed. This should lead to opportunities to find unexpected catalytic results and identify the
“groups” of catalyst outputs, providing well-defined boundaries for future optimizations. However, very
few new papers deal with strategies that guide exploratory studies. Mostly, traditional designs, homogeneous
covering, or simple random samplings are exploited. Typical catalytic output distributions exhibit unbalanced
datasets for which an efficient learning is hardly carried out, and interesting but rare classes are usually
unrecognized. Here is suggested a new iterative algorithm for the characterization of the search space structure,
working independently of learning processes. It enhances recognition rates by transferring catalysts to be
screened from “performance-stable” space zones to “unsteady” ones which necessitate more experiments to
be well-modeled. The evaluation of new algorithm attempts through benchmarks is compulsory due to the
lack of past proofs about their efficiency. The method is detailed and thoroughly tested with mathematical
functions exhibiting different levels of complexity. The strategy is not only empirically evaluated, the effect
or efficiency of sampling on future Machine Learning performances is also quantified. The minimum sample
size required by the algorithm for being statistically discriminated from simple random sampling is
investigated.

Introduction

High throughput experimentation (HTE) has become an
accepted and important strategy in the search for novel
catalysts and materials.1 However, one of the major problems
is still the design of experiments (DoE). At early stages of
a discovery research program, only pure exploratory com-
puter science methodologies coupled with very fast (i.e.,
qualitative response) screening tools should be employed.
This aims at discovering the different “groups” of catalyst
outputs to provide well-defined boundaries for future opti-
mizations. Therefore, the prescreening strategy will extract
information or knowledge from a restricted sampling of the
search space to provide guidelines for further screenings. The
chemist’s knowledge should be used to define a “poorly
explored” parameter space, leading to opportunities of
surprising or unexpected catalytic results, especially when
considering that HTE tools for synthesis and reactivity testing
already restrict much the experimental space. However, very
few new papers deal with the strategies that should be used
to guide such an exploratory study. In most cases, either
systematic methods for homogeneous covering2-6 or simple
random sampling (SRS)7 are exploited, whereas other
traditional DoE8-10 are neglected due to their specificities
and constraints, that is, restrictions. The typical distribution
of catalytic outputs usually exhibits unbalanced datasets for

which an efficient learning can hardly be carried out. Even
if the overall recognition rate may be satisfactory, catalysts
belonging to rare classes are usually misclassified. On the
other hand, the identification of atypical classes is interesting
from the point of view of the potential knowledge gain. SRS
or homogeneous mapping strategies seem to be compulsory
when no activity for the required reaction is measurable and
the necessary knowledge for guiding the design of libraries
is not available.11

In this study, classes of catalytic performances are un-
ranked since the objective is not to optimize catalytic
formulations but, rather, to provide an effective method for
selecting generations of catalysts permitting (i) An increase
in the quality of a given learning method performed at the
end of this first exploratory stage. The aim is to obtain the
best overall model of the whole search space investigated
while working independently from the choice of the super-
vised learning system. (ii) A decrease in the misclassification
rates of catalysts belonging to small frequency classes of
performance (i.e., false negatives). (iii) Handling of all types
of features at the same time, that is, both quantitative and
qualitative. (iv) Integration of inherent constraints, such as
a priori-fixed reactor capacity constraint and a maximum
number of experiments, to be conducted (so-called deadline).
(v) Proceeding iteratively and capturing the information
contained in all previous experiments.

A new iterative algorithm called MAP (because it performs
an improved MAPping) is suggested for the characterization
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of the space structure. It works independently of the chosen
learning process as a filter on the sampling to enhance the
recognition rate by transferring selected catalysts to be
synthesized and tested from “stable” search space zones to
“unsteady” ones, which necessitates more experimental
points be well-modeled within the search space. This new
stochastic approach is a group sequential biased sampling.

The organization of the paper is as follows: First, the
motivations of the present work are detailed, then some
notations and representations used throughout the text are
presented. In the third section, the MAP method and its
central criterion are investigated. The fourth section details
the creation of the benchmarks and discusses the great
interest of using such testing methodology, then in the fifth
section, the method is evaluated on different benchmarks
identified by mathematical functions that exhibit different
levels of difficulty. Finally, the sixth section emphasizes
quantifying the strength of such a method through statistical
analysis, and the results are thoroughly discussed.

Planning Methodologies

Since the entire research space is far too broad to be fully
explored, three methodologies, namely, mapping, screening,
and optimization, are used for selecting experiments to be
conducted. These strategies are different from a point of view
of their respective objectives relative to exploration and
exploitation of the search space. Thus, each of them is more
or less appropriated to a given HT step. At the beginning of
a research program, the space must be explored, and
approaching the end, exploitation of past results must be
enhanced to obtain optimized formulations. In ref 6, mapping
is described as to develop relationships among properties,
such as composition, synthesis conditions, etc. while these
interactions may be obtained without searching for hits or
lead materials. Then the results of mapping studies can be
used as input to guide subsequent screening or optimization
experiments. The purpose of screening experiments is to
identify iteratively, by accumulation of knowledge, hits or
small space regions of materials with promising properties.
The last way to guide the chemist, called optimization, is
when experiments are designed to refine material properties.

Mapping has received relatively little attention, being too
often subsumed under screening because of the rigidity of
the different methods available. In MAP, the exploration is
improved through its iterative behavior, and its flexibility is
superior since all major constraints (iterative process,
deadline, reactor capacity, and no a priori hypothesis) are
handled. However, it remains entirely a mapping, since it
does not perform any search for hits or leads, but instead
makes use of performance levels by focusing on irregularity
or variability, also called the “wavering” behavior of class
distribution. Therefore, the given methodology should be
tested versus an analogous algorithm under the same condi-
tions.

In classical statistical DoE, the fundamental objective is
hypothesis testing. An experiment is designed to generate
statistically reliable conclusions to specific questions. There-
fore, the hypothesis must be clearly formulated, and experi-
ments are chosen according to the given supposition to verify

it in a best statistical manner (see ref 12 for an example).
This strategy is particularly suited to domains that are known
sufficiently well that appropriate questions can be formed
and models can be predefined.

In contrast, combinatorial methods are often employed for
the express purpose of exploring new and unknown domains.
Considering the different requirements defined earlier many
drawbacks remain, such as (i) the mapping methods are rarely
iterative; (ii) in case of complementary experiments (named
plans), they have to be chosen by the user; (iii) the number
of experiments to be performed is usually imposed by the
method, it may not fit the reactor capacity, and selection of
points to be added or removed is not a trivial task; (iv)
usually, only continuous variables are considered, and high-
order effects can be quantified to highlight synergism
between factors, but the assessments have to be paid through
a drastic increase in the number of experiments.

Even if carefully planned, statistically designed experi-
ments which offer clear advantages over traditional one-
factor-at-a-time alternatives do not guarantee the constraints
imposed by the domain of application. Classical sampling
procedures may appear as alternatives. The SRS gives a
subset of possible catalysts among the whole predefined
search space, for which each element of the population is
equally likely to be included in the sample. Astratified
random sampleis obtained by partitioning the population
then taking a SRS of specified size from each stratum. A
weighted randomsample is one in which the inclusion
probabilities for each element of the population are not
uniform. The use of weight or strata in samplings necessitate
an a priori knowledge of the structure of the search space
according to the given feature from which sampling is biased,
and this is precisely what is lacking. Concerning SRS, an
improved sampling strategy should control its random
character to avoid obviously useless distributions. Finally,
SRS remains the only strategy for comparison with our
method; however, SRS should not be underestimated. See
ref 13 for a detailed explanation of SRS robustness.

Simple Example: A Natural Behavior. Let us suppose
that K catalysts have to be chosen iteratively by a given
process. To obtain reliable statistics from the search space,
a common strategy is to proceed with a first relatively broad
random sample. Then this dataset is analyzed, and then
smaller samples are used, fitting exactly the reactor capacity
and taking into account the knowledge gained from the first
evaluation. The number of iterations, notedg, is fixed a
priori. K ) k1 + gk2 is the total number of evaluated catalysts,
with k1 a given amount of points for the initialization step,
whereask2 represents the size of the secondary samples. Let
us draw a search space with five classes of catalyst
performances, each represented by a different combination
of color and shape. In this example,k1) k2 ) 5, g )10, and
K ) 55. Figure 1a shows thek1 first random points. Figure
1b and c show, respectively, the following generations (g )
1 and 2). One can observe that a natural way to proceed is
to try to cover the space at the beginning of the exploratory
study. At the third generation, 40 points still have to be
placed, and on the other hand, the bottom-left corner is
entirely filled with red triangles (Figure 2). Both “careful-
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ness” and remaining time allow adding new points in this
area, as shown in Figure 3, for the following generations.
However, a decreasing number of points will be allocated
in this area as the red triangle trend is confirmed. The top-
right “zone” in Figure 2 (i.e., the dotted rectangle) appears
as the most “puzzling” region, since the five different classes
emerged for only seven points, making the space structure
blurry and without a clear distribution at this step. As soon
as the emergence of a confusing region is detected, a “natural
behavior” is to select relatively more catalysts belonging to
the given region to better capture the space structure. A better
recognition of space zones in which a relatively high
dynamism is detected should permit the understanding of
the underlying or causal phenomenon and, therefore, could
be extrapolated for localizing hit regions. In the last

generation (Figure 4), 27 points are located the top third, 18
in the middle part and 10 in the bottom one. If a SRS was
considered, the probability for obtaining such an average
distribution would be very low. The present distribution and,
consequently, such a “natural behavior” seem motivating for
better modeling the structure of the search space.

This simple example emphasizes the intuitive iterative
assignment of individuals onto the search space when the
structure of the landscape has to be discovered. MAP can
be performed with any types of features, and no distance
measure is required; however, the learning system, also called
machine learning (ML), should handle this flexibility, and
this is the main reason (i) neural network (NN) approach
has been chosen for future comparisons, and (ii) that the
search space is supposed to be bidimensional in the simple
previous example, since the1-nearestneighbor (1-nn) method
has been applied for modeling the entire search space (Figure
5). 1-nn, is a special case of k-nn14 and necessitates a distance
for assigning labels.

Notations and Iterative Space Structure Characteriza-
tion. The MAP method is a stochastic group sequential
biased sampling. Considering a given ML, it iteratively
proposes a sample of the search space which fits user
requirements for obtaining better ML recognition rates.
Figure 6 depicts the whole process. The search space is noted
Ω andωp ∈Ω (p ∈[1..P]) corresponds to an experiment. The
output set of variables is [Y]. A processPpartition is chosen
by the user to provide a partition of [Y] inH g2 classes,
notedCh, h ∈[1..H]. Ppartition can be a clustering, which, in
some sense, “discovers” classes by itself by partitioning the
examples into clusters, which is a form of unsupervised
learning. Note that, once the clusters are found, each cluster
can be considered as a “class” (see ref 11 for an example).
[X] is the set of independent variables notedVi, andxij is the

Figure 1. (a) k1 first random points for initialization. (b) First generation ofk2 points withk2 ) 5. (c) Second generation.

Figure 2. Third generation. The dotted line on the bottom left
(- - -) defines a zone which is said “stable”, as only red triangles
appear in this area. On the other hand, the top right corner
()) ))) is said to be “puzzling”, as many (here, all) different
classes of performances emerge in this region.

Figure 3. Simple example of intuitive iterative distribution of points: generations 4-7.
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value of Vi for the individual j. EachVi can be either
qualitative or quantitative. A given quantitative feature,Vi

discretized by a processFdiscr provides a set of modalities
mi, with Card(mi) ) mi, mi j. j ∈[1..mi] is the modalityj of Vi.
For any variable, the number of modalitym is of arbitrary
size. MAP is totally independent from the choice of the ML.
A classifierc, C(.) ) c(V1(.), V2(.), ...,Vn(.)) is utilized (here,
c is a NN for the reasons previously mentioned), which can
recognize the class using a list of predictive attributes.

Criterion

The method transfers the points from potentially stable
zones of the landscape to unsteady or indecisive ones. The
following questions will be answered: How is the “dif-

ficulty” of a space zone assessed? How is the necessity to
confirm trends and exploration balanced while bearing in
mind that deadline is approaching?

Contingency Analysis and Space Zones.The develop-
ment of active materials mainly relies on the discovery of
strong interactions between elements or, more generally
speaking, on the finding of synergism between factors. Each
cell of a bidimensional (2D) contingency table, say in row
i and columnj, represents the number of elements that have
been observed to belong simultaneously to modalityi of the
first variable and to modalityj of the second variable. The
contingency analysis can be extended to higher dimensions
and provides results in a format that is straightforward to be
transformed in rules for the chemists.15,16 A zone is defined
as a set ofo variables.17 Examples are given in Figure 7.
The dark area is the “smallest”, that is, the most accurate,
possible zone, since it is defined on the whole set of
variables. “Larger”, that is, more general, zones defined by
2 variables are drawn on the Figure 7:{(V2, 1); (V3, 3)} in
(\\\\) and {(V1, 3); (V4, 2)} in (////), where (Vi, j) ) mij.
def(V1, ..., Vn) ) {{1..mi1}, {1..mi2}, ..., {1..min}}. A zone
for which only some modalities are specified is notedswith

Figure 4. Last generation.k1 ) 5, k2 ) 5, g ) 10 w K ) k1 + g.
k2 ) 55. All the points are represented by white dots, whatever the
corresponding class, and the structure of the entire search space is
drawn as background. The number of points in each vertical third
is noted on the right-hand side of the picture to underline the
difference between a simple random sampling and such an intuitive
sampling.

Figure 5. Here, the search space is supposed to be bidimensional
and continuous. Considering this hypothesis, the modeled search
space with (1- nearest neighbor) algorithm is drawn. By over-
lapping perfectly Figures 6 and 7, the recognition rates of1 - NN
could be calculated for each class.

Figure 6. Scheme representing the MAP methodology.

Figure 7. Space zones.

MAP: An Experimental Design Methodology Journal of Combinatorial Chemistry, 2006, Vol. 8, No. 3307



s: def f {mi, -}, mi def(Vi), where “-” is the unspecified
modality. o(s) is the function that returns the number of
defined modalities ins (called “order”). Let us consider a
search space partitioned intoH classes andN catalysts
already evaluated.Vi containsmi modalities, andnij corre-
sponds to the amount of catalysts withmij. The number of
catalysts belonging to the classh possessing the modalityj
of the variablesVi is nh

ij. The general notation is summarized
in eq 1.

The Chi-Square. The calculation of the statistic called
ø2(chi-square, eq 2) is used as a measure of how far a sample
distribution deviates from a theoretical distribution. This type
of calculation is referred to as a measure of goodness of fit
(GOF).

The chi-square can be used for measuring how the classes
are disparate into zones as compared to the distribution one
gets after the random initialization (k1 points) or the updated
one after successive generations. Therefore, a given number
of points can be assigned into zones proportionally to the
deviation between the overall distribution and observed
distributions into zones. Figure 8 shows a given configuration
with H ) 4, N ) 1000, andVi (with mi ) 5) that splits the
root (i.e., the overall distribution on the left-hand side). For
equal distributions between the root and a leaf, chi-square
is null (øi52, 9 in Figure 8). Chi-square values are equals for
two leaves with the same distribution between each other
(b in Figure 8). One would prefer to add a point with the
third modality (bottom b) to increase the number of
individuals, which is relatively low. This is confirmed by
the fact thatø2 is relatively more “reactive” for leaves with

smaller populations (see the absolute variations (9 f b and
0 f O) of two successiveø2 in Figure 9). To obtain a
significant impact, that is, information gain, by adding a new
point, it is more interesting to test new catalysts possessing
a modality which has been poorly explored (i.e.,0). Chi-
square does not make any difference between leaves that
exhibit exactly the same distribution (i.e.,0 and 9).
Therefore,nij must be minimized at the same time to support
relatively empty leaves.

The MAP Criterion. On the basis of the chi-square
behavior, the MAP criterion is defined as (ø2 + 1) ×
(nij + 1)-1. Extremely unstable and small zones may have
distributions that are very far from the overall distribution.
With this criterion, they may continuously attract experi-
ments; however, this may not be due to a natural complex
underlying relationship but, rather, to lack of reproducibility,
uncontrolled parameters, noise, etc. Therefore, the maximum
number of experiments a zone can receive is bounded by
the user.Xrndk2

o is the calculated average number of indi-
viduals that a zone of ordero receives from a SRS ofk2

points. A maximum number of points notedFXrndk2+k1
o that

MAP is authorized to allocate in a zone compared toXrndk2
o

can be decided.F is a parameter the user has to set.

After the distribution zone analysis done after each new
selected generation, the algorithm ranks them on the basis
of the MAP criterion. Among the whole set of zone,ts, called
(tournament size) zones, are selected randomly and com-
pete together following the GA-like selection operator,
called a “tournament”.18,19 A zone with rankr has a 2r ×
[k2(k2 + 1)]-1 chance to be selected. As the criterion is
computed on subsets of modalities (i.e., zone of ordero),
when a given zone is selected for receiving new points, the
modalities that do not belong tos are randomly assigned.

The class concept is of great importance, since the criterion
deeply depends on the root distribution. Enlarging or splitting
classes permits an indirect control of the sampling. It is
recommended that “bad” classes be merged and good ones
be split to create relatively unbalanced root distributions. A
reasonable balance must be respected; otherwise, small and
interesting classes hidden in large ones will have less chance
of being detected. In the experiments presented in the next
section,o remains fixed and is a priori set. For each zone of
order o, the corresponding observed distribution and the
related MAP criterion value are associated.
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Figure 8. Criterion settings, first configuration. On the left-hand
side is represented the entire search space. This given root has been
split into five leaves, for which the distributions are given for the
last three. Each leaf and the root are partitioned into five classes.
The first class has received 100 elements, and among these, 12
belong to the fourth leaf. The chi-square statistic is given on the
right-hand side of each leaf between brackets.
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Benchmarking

In most cases, benchmarking is not performed with a
sufficient number of different problems. Rarely can the
results presented in articles be compared directly. Often, the
benchmark setup is not documented well enough to be
reproduced. It is impossible to say how many datasets would
be sufficient (in whatever sense) to characterize the behavior
of a new algorithm. With a small number of benchmarks, it
is impossible to characterize the behavior of a new algorithm
in comparison to known ones. The most useful setup is to
use both artificial datasets,20 whose characteristics are known
exactly, and real datasets, which may have some surprising
and very irregular properties. Ref 21 outlines a method for
deriving additional artificial datasets from existing real
datasets with known characteristics; the method can be used
if insufficient amounts of real data are available or if the
influence of certain dataset characteristics are to be explored
systematically. Here, two criteria are emphasized to test this
new algorithm: (i) Reproducibility. In a majority of cases,
the information about the exact setup of the benchmarking
tests is insufficient for other researchers to exactly reproduce
it. This violates one of the most basic requirements for valid
experimental science.22 (ii) Comparability. A benchmark is
useful if results can be compared directly with results
obtained by others for other algorithms. Even if two articles
use the same dataset, the results are most often not directly
comparable, because either the input/output encoding or the
partitioning of training versus test data is not the same or is
even undefined.

The efficiency of the MAP method is thoroughly evaluated
with mathematical functions. These benchmarks may be
represented on multidimensional graphics transformed to
bidimensional charts called “maps”. Their construction is first
carefully detailed, and then benchmarks are presented.

Creation of Benchmarks. A benchmark is built after 3
steps: (i) n-Dimension functions are traced onto a first
bidimensional series plot. (ii) Classes of performances are
constructed by setting thresholds on they axis of the series
plot. (iii) Between two thresholds, every point corresponding
to a given class is labeled. On the basis of these classes, the
map is created. Each variable of a given functionf is
continuousf(xi) f y ∈ R. For simplicity, all of the variables
for a given function are defined on the same range∀i, xi

∈[a ... b], (a,b) ∈ R. The range is cut into pieces.Pdiscr

splits [a ... b] into mi equal parts (∀i, mi ) m). All the
boundaries (m + 1) are selected as points to be plotted in
the series plot. On thex axis, an overlapped loop is applied
taking into account the selected values of each variable. As
example, let us consider Baumesfg function (eq 3). Figure
10 shows the associated series plot withn ) 6 and xi

∈[-1..1]. An overlapped loop is used on each feature with
nine points for each, that is, 531 441 points in total. This
procedure permits one to simply determine the different
levels that will be used for partitioning the performance and,

thus, to establish the different classes. The size of each class
(i.e., the number of points between two thresholds) is, thus,
easily visualized by splitting the series plot with thresholds
(horizontal lines in Figure 10). One color and form is
assigned to each class: bluee 2,2 < aqua e 6,6 <
greene 10, 10< yellow e 15, red> 15. Figure 11 gives
an example of the placement of points for creating the map.
Figure 12 shows the map corresponding to Figure 10
(eq 3).

Selection of Benchmarks.Five different benchmarks (De
Jong f1 and De Jongf3,23 Schwefel f7,24 Baumesfa, and
Baumesfg; see eq 3) have been selected to test the algorithm.
Among them, some new ones (Baumesfa and Baumesfg)
have been specially designed to trap the method and, thus,
to reveal MAP limits. The maps are presented in the
Supporting Information.

Results

MAP samples and the corresponding effect on NN learning
are compared to SRS. An introduction of NNs as a classifier
for catalysts is thoroughly depicted in ref 25. The dataset is
always separated into a training test and a selection test to
prevent overfitting. The problem of overfitting is discussed
in ref 26. The use of analytical benchmarks permits the
utilization of test sets with an arbitrary number of cases. For
each sample (both from MAP and SRS), 10 000 individuals
are randomly chosen as test set. As an example, 1500 points
have been sampled on De Jongf123 search space (9var./4mod.)
(see Table 1 for both SRS and MAP). When using MAP,
the number of good individuals (class A, the smallest) is
increased from 4 with SRS (training+ selection A) to 27
with MAP. The distribution on the search space with MAP
permits one to increase both the overall rate of recognition
and the recognition of small classes. For the other bench-
marks, the distributions in the merged training and selection
sets are given in Table 2, whereas the distribution in the test
sets are shown in Table 3. It can be seen in the respective
distributions of every tested benchmark that small classes

Figure 9. Criterion settings, second configuration.
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received more experiments (the smallest class is in gray),
and the larger ones lost a part of their effect (the largest is
in black), as was expected if using MAP instead of SRS.

Results show clearly that MAP permits a better charac-
terization of small zones than does SRS while exploration
of the search space is perfectly maintained. The gain of

Figure 10. Series plot Baumesfg. The number of variables noted,n ) 6, and the number of points represented for each feature is 9.

Figure 11. Multidimensional function represented onto 2D space called “map”.
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recognition by NN on both the smallest and the largest
classes for each benchmark using MAP instead of SRS is
given in Figure 13. It can be seen that the gains on the
smallest classes are tremendously increased, varying from
18% to an infinite gain. In Figure 13 and for the benchmark
called “Schwefel f7”,24 a value of 600 is indicated (for
infinite) since we have assigned one experiment into the
smallest zone so as not to obtain a zero division. The loss
of recognition rate for the largest classes (if there is loss) is
very low compared to the high gain on small ones. Such
loss is<22%, showing clearly that the exploration remains
nearly perfect. The overall recognition rate being deeply
influenced by the relative size of classes does not represent

an adequate criterion; however, MAP outperforms SRS in
most of the cases.

During all the experiments, the root distribution has been
fixed from the beginning. One has to note that the user could
intentionally not respect the real distribution in order to give
weights on selected classes as presented earlier in the
definition of the criterion. The methodology for reevaluating
the root distribution is quickly presented in the available
Supporting Information.

Discussion and Further Analysis

Is MAP Distribution Significantly Different from SRS
Sampling? Because MAP is not influenced by the choice

Figure 12. 2D map for function Baumesfg (n ) 6; 9 pts/var).

Table 1. Training, Selection, and Test Sets of De Jongf1
from SRS (Upper Array) and MAP (Lower Array)

Table 2. Merged Training and Selection Sets after Sampling
from MAP and SRS Considering All Other Benchmarksa

a In each case, five classes are present (A-E).
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of the ML applied on selected points, another way to gauge
the influence of MAP is to analyze the distribution of points.
Therefore, if the overall distribution of classes on the whole
search space is statistically similar to an SRS, the MAP
method doesnot transfer a point from zone to zone.

The chi-square test27 is used to test if a sample of data
comes from a population with a specific distribution. The
chi-square GoF test is applied to binned data (i.e., data put
into classes) and is an alternative to the Anderson-Darling28

and Kolmogorov-Smirnov29 GOF tests, which are restricted
to continuous distributions. In statistics, the researcher states
as a “statistical null hypothesis”, notedH0, something that
is the logical opposite of what it is believed. Then, using
statistical theory, it is shown from the data thatH0 is false
and should be rejected. This is called “reject-support testing”
(RS testing) because rejecting the null hypothesis supports
the experimenter’s theory. Consequently, before undertaking
the experiment, one can be certain that only 4 possible things
can happen. These are summarized in the Table 4. Therefore,
statistic tests withV df (V ) (l - 1)(c - 1) ) 4) are computed
from the data (Table 5).H0: MAP ) SRS,H1 MAP * SRS
is tested. For such an upper one-sided test, one finds the
column corresponding toR in the upper critical values table

and rejectsH0 if the statistic is greater than the tabulated
value. The estimation and testing results from contingency
tables hold regardless of the distribution sample model. Top
values in Table 5 are frequencies calculated from Table 1.
The chi-squareøV

2 ) ∑ (fobserved- ftheoritical)2 × ftheoritical
-1 is

noted in red and the critical values at a different level are in
blue. Yes (Y) or no (N) correspond to answers to the
question, “Is H0 rejected?”. Table 5 shows that MAP
distribution differs from SRS for some cases only. One can
note that negative answers are observed on two benchmarks,
called Baumesfa and Baumesfg (the black cell is discussed
later). These benchmarks have been created to check MAP
efficiency on extremely difficult problems; however, the
analysis of the results in the previous section clearly shows
that MAP modifies the distributions and, thus, implies
improvement of search space characterization through ML.
Therefore, the sample size is thought not to be large enough
to discriminate both approaches.

Figure 13. Percentage recognition gain for both the smallest and largest class considering every benchmark when using MAP methodology
instead of SRS.

Table 3. Distribution of Classification by Neural Network in Test Depending on the Sample (SRS or MAP) for All Benchmarks

Table 4. Statistical Hypothesis Acceptances and Rejections
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Does MAP Really Move Points from Zones to Zones
in the Search Space?Moving points into search space is a
fact, but transferring individuals from stable zones to puzzling
ones is different. Therefore, new tests have been performed.
The overall distribution is split on the basis of a set of
modalities or a given number of variables, and a new chi-
square GoF is evaluated (eq 4).

If i ) 3, thenV ) 6, and the critical value isø0.05(6)
2 )

12.5916.H0 is accepted when no difference in zone size is
observed for the considered variables on a given benchmark
and also thatH0 is rejected when a clear difference appears.
Tables from these tests are not presented. With “easy”
benchmarks, it appears clearly that MAP acts as expected.
However, for one case,H0 is accepted, but this does not
imply that the null hypothesis is true; it may mean that this
dataset is not strong enough to convince that the null
hypothesis is not true. To conclude that MAP action is not
statistically significant when the null hypothesis is, in fact,
false is called a “type II error”. Thus, the power of the test
is finally discussed.

Chi-Square Power. There are two kinds of errors
represented in the Table 5. The power testing procedure is
set up to giveH0 “the benefit of the doubt”; that is, to accept
H0 unless there is strong evidence to support the alternative.
Statistical power (1- â) should be at least 0.80 to detect a
reasonable departure fromH0. The conventions are, of course,
much more rigid with respect toR than with respect toâ.
Factors influencing power in a statistical test include (i) What
kind of statistical test is being performed; some statistical
tests are inherently more powerful than others. (ii) Sample
size. In general, the larger the sample size, the larger the
power.

To ensure a statistical test will have adequate power, one
usually must perform special analyses prior to running the
experiment to calculate how large a sample size (notedn) is
required. One could plot power against sample size, under
the assumption that the real distribution is known exactly.

The user might start with a graph that covers a very wide
range of sample sizes to get a general idea of how the
statistical test behaves; however, this work goes beyond the
topic of this paper. The minimum required sample size that
permits one to start discriminating (significantly, with a fixed
error rateR) MAP from SRS is dependent on the search
space landscape. This simulation will be investigated in
future work. It needs to be noted that 1500 points have been
selected for each benchmark; however, the search spaces are
extremely broad, and thus, such a sample size represents only
a very small percentage of the entire research space.

Conclusion

There are several motivations for wanting to alter the
selection of samples. In a general sense, we want a learning
system to acquire knowledge. In particular, we want the
learned knowledge to be as generally useful as possible while
retaining high performance. If the space of the configurations
is very large with much irregularity, then it is difficult to
adequately sample enough of the space. Adaptive sampling,
such as MAP, tries to include the most productive samples.
Such adaptive sampling allows selecting a criterion over
which the samples are chosen. The learned knowledge about
the structure is used for biasing the sampling.

MAP has been thoroughly presented and tested. As such,
this methodology was developed to propose formulations that
are relevant for testing at the very first stage of a HT program
when numerous but inherent constraints are taken into
account for the discovery of new performing catalysts. No
comparative study has been found in the literature for when
such a methodology is flexible enough to be applied on a
broad variety of domains. The main advantages are the
following: The number of false negatives is highly decreased
while the number of true positives is tremendously increased.
MAP is totally independent of the classifier and creates more
balanced learning sets, permitting both preventing over-
learning, and gaining higher recognition rates. All previous
experiments can be integrated, giving more strength to the
method, and any type of feature is taken into account. The
method is tunable through the modification of the root
distribution.
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